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Abstract: A 4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazole-3-oxide-1-oxyl lithium derivative was

found to react with perfluoroaromatic compounds with formation of products of fluoro-atom

substitution, namely fluorinated aryl(hetaryl)-substituted nitronyl nitroxides. The yields of the

fluorinated nitroxides were acceptable in cases of reactions with functionalized perfluorobenzene

and perfluoropyridine (25–60%), but was low in case of reaction with perfluorobiphenyl (~ 5%).

Molecular and crystal structures of the obtained nitronyl nitroxides were solved by monocrystal X-

ray diffraction analysis, and the nature of the radical was ascertained by EPR.
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Introduction
Open-shell organic compounds are promising components for next-generation electronic and

spin devices because of their wide diversity of molecular design, structural flexibility and

processability [1]. In the past few decades, substituted nitronyl nitroxides (R–NN) have been

actively utilised as organic spin carriers that allowed to discover materials with unique spin-related

properties such as purely organic magnetic switches [2], ferromagnets and ferrimagnets [1],

magnets with negative magnetoresistance [3] and graphene-based magnetic polymers [4].

Nitronyl nitroxides are generally obtained via condensation of bis-hydroxylamines with various

aldehydes (or polyaldehydes) and subsequent oxidation of the corresponding 1,4-

dihydroxyimidazolidines [5]. Nevertheless, the reactions of aromatic aldehydes bearing highly

electron-withdrawing substituents have sometimes been unsuccessful [5b, 6], probably due to the

low stability of the condensation products. The direct introduction of the NN group into organic

scaffolds using a nitronyl nitroxide non-substituted at position 2 (H–NN) as a synthetic unit is an

alternative and promising way to access a diverse range of radical derivatives R–NN. Throughout

the history of nitronyl nitroxide chemistry, numerous nucleophilic and cross-coupled reactions with

metalated derivatives M–NN have been successfully carried out with various electrophiles to obtain
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functionalised R–NNs [7, 8]. The using of the paramagnetic lithium derivative Li–NN was

especially fruitful in context of preparation of functionalized nitronyl nitroxides (Scheme 1) [9].

Scheme 1. Synthetic chemistry of lithiated derivative Li–NN.

Recently, we reported the possibility of fluorine substitution in perfluorobenzonitrile and

perfluorophthalonitrile with Li–NN and thus prepared cyanotetrafluorophenyl- and

dicyanotrifluorophenyl-substituted nitronyl nitroxides [10, 11]. Here we explored the applicability

of this reaction for the preparation of different polyfluorinated functionally-substituted arenes and

hetarenes as well.

Results and Discussion
To carry out the reactions, Li–NN was generated by the action of lithium hexamethyldisilazane

(LiHMDS) on H–NN at –90 °C in tetrahydrofuran (THF; Scheme 1) [12] and treated with the

corresponding perfluoroaromatic compound. After a relatively short period (4 h) the reaction gave a

mixture of products (TLC), from which the target product of fluorine atom substitution, respectively

substituted nitronyl nitroxides 1–4, were isolated using column chromatography with the

subsequent crystallization (Scheme 2).
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Scheme 2. Synthesis of substituted nitronyl nitroxides 1–4.

The structures of all nitronyl nitroxides were solved by single-crystal X-ray diffraction analysis

(Figure 1). Selected geometrical parameters of compounds 1–4 are collected in Table 1. One can

see that the bond lengths and bond angles in these nitronyl nitroxides are within the statistical

means [13]; bond lengths C-N  and  N-O  in  the  paramagnetic  moiety  are  rather  typical  [7].  The

dihedral angles between planes of the nitronyl nitroxide and aromatic moieties are within 57–70°

range.

1

2
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Figure 1. Molecular structures (ORTEP diagram with 30% ellipsoid probability) and atom
numbering of nitronyl nitroxides 1–4.

Table 1. Selected geometrical parameters of compounds 1–4.

Bonds (Å)
Angles (°) 1 2 3 4

O1–N1 1.255(8) 1.275(2) 1.276(2) 1.266(4)
O1a–N1a 1.272(8) 1.275(2)* 1.276(2)* 1.277(4)
N1–C1 1.362(8) 1.336(2) 1.337(2) 1.339(5)
N1a–C1 1.319(8) 1.336(2) 1.337(2) 1.338(5)
N1–C2 1.490(9) 1.506(2) 1.504(2) 1.515(5)

N1a–C2a 1.528(9) 1.506(2)* 1.504(2)* 1.501(5)
C2–C2a 1.586(9) 1.573(3) 1.546(2) 1.571(6)
C1–C5 1.456(9) 1.470(3) 1.469(3) 1.465(5)

O1-N1-C1 124.3(6) 125.9(2) 126.2(1) 125.5(3)
O1-N1-C2 122.4(5) 122.1(1) 123.1(1) 123.2(3)
C1-N1-C2 113.3(5) 111.8(2) 110.2(1) 110.8(3)

O1a-N1a-C1 125.1(5) 125.9(2)* 126.2(1)* 125.9(3)
O1a-N1a-C2a 121.4(5) 122.1(1)* 123.1(1)* 122.6(3)
C1-N1a-C2a 113.5(5) 111.8(2)* 110.2(1)* 111.3(3)
N1-C1-N1a 109.7(5) 110.9(2) 110.7(2) 110.6(3)

α** 57(1) 70.3(2) 69.9(2) 60.4(6)

* Molecules lay on 2-fold axis, so the bond lengths are same.
** Interplain angle for nitronyl nitroxide moiety and aromatic substituent.
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The ESR spectra  for  diluted  ( 10–4 M) and oxygen free chloroform solutions of 1–4 showed

quintet-of-triplet patterns at g = 2.0060(1) (Figure 2a-e). In the case of 4 a  high  resolution  ESR

spectrum was recorded to give more complex splitting of the each line of its quintet. We attributed

the quintet and triplet splitting to the two equivalent nitrogen nuclei and the two equivalent fluorine

nuclei nearest to the nitronyl nitroxide fragment, respectively. The complex pattern observed for 4

was well reproduced taking into account 12 hfs constants on the protons of four methyl groups and

two pairs of hfs constant on the distant fluorine atoms. The exact values of hfs constants used for

the  simulations  are  summarized  in  Table  2.  It  worth  mentioned  that  despite  the  structural

similarities of 1–4,  the  values  of  AN and  AF are slightly different that suggests the differences in

their electronic structures and the ESR spectra line shapes.

Figure 2. ESR spectra recorded for diluted and oxygen free chloroform solutions of 1 (a), 2 (b), 3
(c), 4 (the whole spectrum, d), 4 (the central component, e). Black lines – experimental spectra; red
lines – computing simulations with parameters given in Table 2.

Table 2. Parameters used for the EPR spectra simulations.

Compound giso 2AN,mT 2AFortho, mT

1 2.0060 0.71 0.07

2 2.0060 0.71 0.08

3 2.0060 0.71 0.07

4* 2.0061 0.73 0.07
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*For the simulation of high resolution ESR spectrum of 4 (Fig. 2e) the following values of hfs were
used: 2AN = 0.73 mT; 2AF = 0.07 mT; 12AH = 0.015 mT; 2AF = 0.02; 2AF = 0.015 mT.

Conclusion
We explored the applicability of reaction of 4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazole-3-

oxide-1-oxyl lithium derivative with perfloroaromatic compounds for preparation of

polyfluoroaryl(hetaryl)-substituted nitronyl nitroxides. It was revealed that in all cases the reaction

occurs by regiospecific substitution of fluoro atom at the para-position relative to the functional

group. All the synthesised radicals are stable and were completely characterised both in solution

and in the solid state. The result opens a way to new nitronyl nitroxides with fluorinated electron-

withdrawing substituents; such radicals in turn could be useful open-shell species for application in

fields of molecular magnetism and material sciences.

Experimental Methods
1. Materials and Instrumentation

4,4,5,5-Tetramethyl-4,5-dihydro-1H-imidazol-3-oxide-1-oxyl (H–NN) [9b] was synthesised as

reported earlier, THF was freshly distilled over benzophenone sodium ketyl. Other chemicals were

of the highest purity commercially available and were used as received. Column chromatography

was carried out on silica gel (0.063–0.200 mm). Infrared (IR) spectra were recorded by means of a

Tensor 27 instrument for samples pelleted with KBr (0.25%). UV-vis spectra were registered on HP

Agilent 8453 (10–5–10–4 M solutions in EtOH) spectrophotometers. Masses of molecular ions were

determined by HRMS on a DFS Thermo scientific instrument (EI, 70 eV).

EPR spectra were acquired in a diluted and oxygen free chloroform solutions at 295 K at the

concentrations of ~10–4 M by means of the commercial Bruker X Band (9 GHz) spectrometer

Elexys E 540. For determining the isotropic g-factors (giso), we recorded X-band CW EPR spectra

of mixture of the investigated radical with Finland trityl. Then the known giso of Finland trityl was

used for the spectrum simulation, and the target giso value  was  excluded.  The  simulations  of  the

solution  EPR  lines  were  carried  out  in  the  software  package  Easy  Spin  which  is  available  at

http://www.easypin.org.

2. Synthetic Methods and Characterization

General Procedure of Preparation of Nitronyl Nitroxides. A  1.0  M  solution  of  LiHMDS

(1.1 mL, 1.1 mmol) in THF was added at -90  C into a vigorously stirred solution of 4,4,5,5-

tetramethyl-4,5-dihydro-1H-imidazol-3-oxide-1-oxyl (157 mg, 1.0 mmol) in THF (20 mL) under

argon. The reaction mixture was stirred at -90 °C for 30 min. Then, the solution of perfluoroarene

(1.1 mmol) in THF (5 mL) was added at –90 °C in an argon atmosphere, stirring was continued, and
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the reaction was monitored by TLC (Silufol F254, EtOAc as eluent). After 4 h, TLC changes ceased,

the cooling was stopped, and the reaction mixture was allowed to warm up to room temperature and

brought into contact with the atmosphere. Flash chromatography (SiO2, column 3 × 4 cm, EtOAc as

eluent) yielded a solid mixture after solvent removal under reduced pressure at room temperature.

The resulting solid mixture was separated by column chromatography (SiO2, column 3 × 20 cm,

CH2Cl2 as eluent), which produced a fraction of desired product. The fraction was concentrated

under reduced pressure to a volume of ~5 mL, then n-heptane (5 mL) was added, and the mixture

was incubated for ~60 h at 0–5 °C for slow crystallization of nitronyl nitroxide radical.

2-(4-Trifluoromethyl-2,3,5,6-tetrafluorophenyl)-4,4,5,5-tetramethyl-4,5-dihydro-1H-

imidazol-3-oxide-1-oxyle (1). Yield 90 mg (24%); violet crystals; IR (KBr) ṽmax, cm−1: 409, 503,

536, 602, 677, 706, 719, 874, 970, 999, 1028, 1140, 1155, 1180, 1217, 1265, 1331, 1377, 1390,

1433, 1468, 1495, 1551, 1606, 1662, 2991, 3014, 3441; UV-vis (EtOH) lmax/nm (lg e): 553 (2.66),

373 (3.77), 294 (4.04), 203 (4.01); HMRS: calcd. for C14H12O2N2F7
• [M+] 373.0782; found

373.0783.

2-(4-Nitro-2,3,5,6-tetrafluorophenyl)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazol-3-

oxide-1-oxyle (2). Yield 200 mg (57%); brown crystals; IR (KBr) ṽmax, cm−1: 417, 446, 476, 538,

608, 712, 768, 785, 804, 874, 972, 999, 1011, 1086, 1142, 1176, 1217, 1265, 1356, 1375, 1389,

1429, 1456, 1486, 1551, 1576, 1626, 2413, 2858, 2931, 2947, 3001, 3442; UV-vis (EtOH) lmax/nm

(lg e): 555 (2.70), 373 (3.5), 318 (4.13), 204 (4.08); HMRS: calcd. for C13H12O4N3F4
• [M+]

350.0759; found 350.0758.

2-(2,3,5,6-Tetrafluoropyridin-4-yl)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazol-3-oxide-

1-oxyle (3). Yield 83 mg (27%); violet crystals; IR (KBr) ṽmax, cm−1: 453, 538, 567, 646, 696, 715,

868, 958, 972, 993, 1018, 1136, 1169, 1252, 1271, 1375, 1427, 1450, 1475, 1487, 1547, 1655,

1849, 2993, 3437; UV-vis (EtOH) lmax/nm (lg e): 551 (2.64), 371 (3.89), 288 (4.04), 202 (3.86);

HMRS: calcd. for C12H12O2N3F4
• [M+] 306.0860; found 306.0865.

2-(Perfluorobiphenyl-4-yl)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazol-3-oxide-1-oxyle

(4). Yield 24 mg (5%); violet crystals; IR (KBr) ṽmax, cm−1: 540, 706, 733, 870, 964, 984, 997,

1043, 1134, 1173, 1223, 1267, 1377, 1429, 1487, 1508, 1527, 1595, 1659, 2943, 2995, 3442; UV-

Vis (C2H5OH), λmax/nm (lg ε): 549 (2.83), 370 (3.77), 281 (4.10), 237 (4.15), 202 (4.23); HMRS:

calcd. for C19H12F9N2O2
• [M+] 471,0750; found 471,0747.

3. Crystallographic analysis

XRD  experiments  for  the  crystals  were  carried  out  on  a  Bruker  Kappa  Apex  II  CCD

diffractometer using φ, ω scans of narrow (0.5°) frames with Mo Kα radiation (λ = 0.71073 Å) and

a graphite monochromator at 296 K. All the structures were solved by direct methods and refined
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by the full-matrix least-squares method against all F2 in anisotropic approximation using the

SHELX-97 software  suite  [14].  The  positions  of  H  atoms  were  calculated  via  the  riding  model.

Absorption corrections were applied empirically in SADABS software applications [15]. To exclude

the contribution to the diffraction from the disordered solvent in crystals of 4 and thereby produced

a set of solvent-free diffraction intensities, the PLATON/SQUEEZE [16] procedure was employed.

Crystallographic data on all the compounds are listed in Table 3. CCDC 1899824 (1), 1899825

(2), 1899826 (3), and 1899827 (4) contain the supplementary crystallographic data for this paper.

These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via

www.ccdc.cam.ac.uk/data_request/cif.

Table 3. Crystal data, data collection and refinement details of nitronyl nitroxides 1–4.

1 2 3 4
Crystal data
Chemical formula C14H12F7N2O2 C13H12F4N3O4 C12H12F4N3O2 C19H12F9N2O2

Mr 373.26 350.26 306.25 471.31
Crystal system Orthorhombic  Orthorhombic  Monoclinic Tetragonal,
Space group Pna21 Ibca C2/c P ̶ 421c
a, (Å) 8.215(2) 10.3733(5) 14.0067(7) 19.9841(7)
b 17.781(4) 11.0785(7) 10.7414(7) 19.9841(7)
c 10.996(2) 25.589(2) 10.5168(8) 10.0603(4)
b (°) 90 90 122.419(4) 90
V (Å3) 1606.1(5) 2940.7(3) 1335.7(2) 4017.7 (3)
Z 4 8 4 8
F(000) 756 1432 628 1896
Dx (Mg m-3) 1.544 1.582 1.523 1.558
Radiation type Mo Ka Mo Ka Mo Ka Mo Ka
m (mm-1) 0.16 0.15 0.14 0.16
Crystal size (mm) 0.48 × 0.23 ×

0.04
0.65 × 0.24 ×
0.04

0.40 × 0.20 ×
0.08

0.90 × 0.37 ×
0.09

Data collection
Tmin, Tmax 0.684, 0.862 0.786, 0.862 0.805, 0.862 0.776, 0.862
No. of measured,
independent and
 observed [I > 2s(I)]
reflections

25890,
2846,
1560

10284,
1305,
1019

12295,
 1535,
 1206

43866,
3555,
2911

Rint 0.126 0.050 0.054 0.049
q range (°) 2.2  ̶  25.1 1.6  ̶  25.0 2.6  ̶ 27.5 1.4   ̶  25.1
Range of h, k, l h = -9®9,

k = -21®21,
l = -12®13

h = -12®12,
k = -13®13,
l = -30®30

h = -18®18,
k = -13®13,
l = -13®13

h = -23®23,
k = -23®23,
l = -11®11

Refinement
R[F2 > 2s(F2)], wR(F2), S 0.072, 0.033, 0.046, 0.050,
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  0.210,  1.04   0.135,  1.14  0.132,  1.03   0.142,  1.09
No. of reflections 2846 1305 1535 3555
No. of parameters 229 113 99 293
No. of restraints 1 0 0 0
Dñmax, Dñmin (e Å-3) 0.34, -0.32 0.31, -0.31 0.28, -0.30 0.24, -0.26
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Figure S1. IR spectrum of 1 (KBr). 
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Figure S2. UV spectrum of 1 (EtOH; C = 0.952 mg/25 ml; L = 1 cm). 
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Figure S3. IR spectrum of 2 (KBr). 
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Figure S4. UV spectrum of 2 (EtOH, C = 0.896 mg/25 ml; L = 1 cm). 
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Figure S5. IR spectrum of 3 (KBr). 
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Figure S6. UV spectrum of 3 (EtOH; C = 0.786 mg/25 ml; L = 1 cm). 
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Figure S7. IR spectrum of 4 (KBr). 
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Figure S8. UV spectrum of 4 (EtOH; C = 1.181 mg/25 ml; L = 1 cm). 
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